The Horocycle Flow and the Laplacian on Hyperbolic Surfaces of Infinite Genus

نویسنده

  • OMRI SARIG
چکیده

Consider a complete hyperbolic surface which can be partitioned into countably many pairs of pants whose boundary components have lengths less than some constant. We show that any infinite ergodic invariant Radon measure for the horocycle flow is either supported on a a single horocycle associated with a cusp, or corresponds canonically to an extremal positive eigenfunction of the Laplace–Beltrami operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The generic points for the horocycle flow on a class of hyperbolic surfaces with infinite genus

A point is called generic for a flow preserving an infinite ergodic invariant Radon measure, if its orbit satisfies the conclusion of the ratio ergodic theorem for every pair of continuous functions with compact support and nonzero integrals. The generic points for horocycle flows on hyperbolic surfaces of finite genus are understood, but there are no results in infinite genus. We give such a r...

متن کامل

Random hyperbolic surfaces and measured laminations

We prove an equidistribution result for the level sets of the lengths of simple closed curves in the moduli spaceMg of hyperbolic surfaces of genus g. This result parallels known results regarding horocycle and horosphere flows on homogeneous spaces [Rat], [Dani].

متن کامل

Unique Ergodicity for Infinite Measures

We survey examples of dynamical systems on non–compact spaces which exhibit measure rigidity on the level of infinite invariant measures in one or more of the following ways: all locally finite ergodic invariant measures can be described; exactly one (up to scaling) admits a generalized law of large numbers; the generic points can be specified. The examples are horocycle flows on hyperbolic sur...

متن کامل

Adic Flows, Transversal Flows, and Horocycle Flows

We give a symbolic construction of Shunji Ito’s “transversal flow for a subshift of finite type” [I], along the lines of Vershik’s construction of an adic transformation. We then show how these flows arise naturally in the symbolic coding of horocycle flows on non-compact hyperbolic surfaces with finite area.

متن کامل

A note on Hölder regularity of invariant distributions for horocycle flows

We show that the invariant distributions for the horocycle flow on compact hyperbolic surfaces described by Flaminio and Forni [FF03] can be represented as distributions on the ideal circle tensorized with absolutely continuous measures, and use this information to derive their Hölder regularity. 2000 Mathematics Subject Classification: 37D40, 22E40, 46F20.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009